Jupyter Notebook

Project flow#

LaminDB allows tracking data flow on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-Ξ³ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
πŸ’‘ creating schemas: core==0.47.3 
βœ… saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-04 09:37:33)
βœ… saved: Storage(id='IVuaIFtQ', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2023-09-04 09:37:33, created_by_id='DzTjkKse')
βœ… loaded instance: testuser1/mydata
πŸ’‘ did not register local instance on hub (if you want, call `lamin register`)

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
βœ… loaded instance: testuser1/mydata (lamindb 0.52.1)

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
ln.track(transform)
output_path = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
output_file = ln.File(output_path, description="Raw data of schmidt22 crispra GWS")
output_file.save()
Hide code cell output
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
βœ… saved: Transform(id='woDiyJlh4Ihf47', name='Upload GWS CRISPRa result', type='app', updated_at=2023-09-04 09:37:35, created_by_id='DzTjkKse')
βœ… saved: Run(id='5apOeXeGqCuOvX2Q15KV', run_at=2023-09-04 09:37:35, transform_id='woDiyJlh4Ihf47', created_by_id='DzTjkKse')
πŸ’‘ file in storage 'mydata' with key 'schmidt22-crispra-gws-IFNG.csv'

Hit identification in notebook #

Access, transform & register data in drylab by testuser2:

ln.setup.login("testuser2")
transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
ln.track(transform)
# access
input_file = ln.File.filter(key="schmidt22-crispra-gws-IFNG.csv").one()
# identify hits
input_df = input_file.load().set_index("id")
output_df = input_df[input_df["pos|fdr"] < 0.01].copy()
# register hits in output file
ln.File(output_df, description="hits from schmidt22 crispra GWS").save()
Hide code cell output
βœ… logged in with email testuser2@lamin.ai and id bKeW4T6E
βœ… saved: User(id='bKeW4T6E', handle='testuser2', email='testuser2@lamin.ai', name='Test User2', updated_at=2023-09-04 09:37:37)
βœ… saved: Transform(id='nwR90nBd4stCS7', name='GWS CRIPSRa analysis', type='notebook', updated_at=2023-09-04 09:37:37, created_by_id='bKeW4T6E')
βœ… saved: Run(id='ib63CPjoGqNhJ22d0DZ7', run_at=2023-09-04 09:37:37, transform_id='nwR90nBd4stCS7', created_by_id='bKeW4T6E')
πŸ’‘ adding file xsKtYNJDECvYz4HyQUEd as input for run ib63CPjoGqNhJ22d0DZ7, adding parent transform woDiyJlh4Ihf47
πŸ’‘ file will be copied to default storage upon `save()` with key `None` ('.lamindb/cWnFpm0dO1z8yVMv6Xnb.parquet')
πŸ’‘ data is a dataframe, consider using .from_df() to link column names as features
βœ… storing file 'cWnFpm0dO1z8yVMv6Xnb' at '.lamindb/cWnFpm0dO1z8yVMv6Xnb.parquet'

Inspect data flow:

file = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
file.view_flow()
https://d33wubrfki0l68.cloudfront.net/0b186b00542de7e36231b60a405d90c44214414a/74522/_images/c5b0cb136e0da249bf62f93625cd508dd6fbbaa83015dee518a8009ed39068f6.svg

Sequencer upload #

Upload files from sequencer:

ln.setup.login("testuser1")
ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
# register output files of upload
upload_dir = ln.dev.datasets.dir_scrnaseq_cellranger(
    "perturbseq", basedir=ln.settings.storage, output_only=False
)
ln.File(upload_dir.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
ln.File(upload_dir.parent / "fastq/perturbseq_R2_001.fastq.gz").save()
ln.setup.login("testuser2")
Hide code cell output
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
βœ… saved: Transform(id='fuyfoReFFoQtMV', name='Chromium 10x upload', type='pipeline', updated_at=2023-09-04 09:37:38, created_by_id='DzTjkKse')
βœ… saved: Run(id='x4uYhaSMTi9Mktln6f2l', run_at=2023-09-04 09:37:38, transform_id='fuyfoReFFoQtMV', created_by_id='DzTjkKse')
❗ file has more than one suffix (path.suffixes), inferring:'.fastq.gz'
πŸ’‘ file in storage 'mydata' with key 'fastq/perturbseq_R1_001.fastq.gz'
❗ file has more than one suffix (path.suffixes), inferring:'.fastq.gz'
πŸ’‘ file in storage 'mydata' with key 'fastq/perturbseq_R2_001.fastq.gz'
βœ… logged in with email testuser2@lamin.ai and id bKeW4T6E

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
ln.track(transform)
# access uploaded files as inputs for the pipeline
input_files = ln.File.filter(key__startswith="fastq/perturbseq").all()
input_paths = [file.stage() for file in input_files]
# register output files
output_files = ln.File.from_dir("./mydata/perturbseq/filtered_feature_bc_matrix/")
ln.save(output_files)
Hide code cell output
βœ… saved: Transform(id='vEFyCdq0VEjbKG', name='Cell Ranger', version='7.2.0', type='pipeline', updated_at=2023-09-04 09:37:39, created_by_id='bKeW4T6E')
βœ… saved: Run(id='ZL5nlM7CMNYDEROXoMUf', run_at=2023-09-04 09:37:39, transform_id='vEFyCdq0VEjbKG', created_by_id='bKeW4T6E')
πŸ’‘ adding file F1EasALQGTkbZWpfTHXF as input for run ZL5nlM7CMNYDEROXoMUf, adding parent transform fuyfoReFFoQtMV
πŸ’‘ adding file Y87gcjchQGbw2EwOuB5G as input for run ZL5nlM7CMNYDEROXoMUf, adding parent transform fuyfoReFFoQtMV
❗ file has more than one suffix (path.suffixes), inferring:'.tsv.gz'
❗ file has more than one suffix (path.suffixes), inferring:'.tsv.gz'
❗ file has more than one suffix (path.suffixes), using only last suffix: '.gz'
βœ… created 3 files from directory using storage /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata and key = perturbseq/filtered_feature_bc_matrix/

Post-process these 3 files:

transform = ln.Transform(name="Postprocess Cell Ranger", version="2.0", type="pipeline")
ln.track(transform)
input_files = [f.stage() for f in output_files]
output_path = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
output_file = ln.File(output_path, description="perturbseq counts")
output_file.save()
Hide code cell output
βœ… saved: Transform(id='MLezyQ2UhEVuWL', name='Postprocess Cell Ranger', version='2.0', type='pipeline', updated_at=2023-09-04 09:37:39, created_by_id='bKeW4T6E')
βœ… saved: Run(id='D5ATcOKdx3JJJpST6gJh', run_at=2023-09-04 09:37:39, transform_id='MLezyQ2UhEVuWL', created_by_id='bKeW4T6E')
πŸ’‘ adding file o2UaXmcfLJgiK9pbBziW as input for run D5ATcOKdx3JJJpST6gJh, adding parent transform vEFyCdq0VEjbKG
πŸ’‘ adding file SXKbiEeMeS6UpIEUgqo2 as input for run D5ATcOKdx3JJJpST6gJh, adding parent transform vEFyCdq0VEjbKG
πŸ’‘ adding file sukQ5QdzG7BBTfJb7b0N as input for run D5ATcOKdx3JJJpST6gJh, adding parent transform vEFyCdq0VEjbKG
πŸ’‘ file in storage 'mydata' with key 'schmidt22_perturbseq.h5ad'
πŸ’‘ data is AnnDataLike, consider using .from_anndata() to link var_names and obs.columns as features

Inspect data flow:

output_files[0].view_flow()
https://d33wubrfki0l68.cloudfront.net/c96d3cb53386503be926acd1f81242ff832445bb/8d982/_images/ec08032ebcd4cc7ab4578e543e9b919cb87871786a4a56150a579c83cdbade59.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in a notebook:

transform = ln.Transform(
    name="Perform single cell analysis, integrate with CRISPRa screen",
    type="notebook",
)
ln.track(transform)

file_ps = ln.File.filter(description__icontains="perturbseq").one()
adata = file_ps.load()
file_hits = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
screen_hits = file_hits.load()

import scanpy as sc

sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
filesuffix = "_fig1_score-wgs-hits.png"
sc.pl.umap(adata, color="score", show=False, save=filesuffix)
filepath = f"figures/umap{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
filesuffix = "fig2_score-wgs-hits-per-cluster.png"
sc.pl.matrixplot(
    adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
)
filepath = f"figures/matrixplot_{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
Hide code cell output
βœ… saved: Transform(id='dp3VvVZyFZe2Sx', name='Perform single cell analysis, integrate with CRISPRa screen', type='notebook', updated_at=2023-09-04 09:37:40, created_by_id='bKeW4T6E')
βœ… saved: Run(id='Y9sJrfenaRU8Ob1abzGV', run_at=2023-09-04 09:37:40, transform_id='dp3VvVZyFZe2Sx', created_by_id='bKeW4T6E')
πŸ’‘ adding file xv1UgTKEAwbdlKbaNp38 as input for run Y9sJrfenaRU8Ob1abzGV, adding parent transform MLezyQ2UhEVuWL
πŸ’‘ adding file cWnFpm0dO1z8yVMv6Xnb as input for run Y9sJrfenaRU8Ob1abzGV, adding parent transform nwR90nBd4stCS7
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
πŸ’‘ file will be copied to default storage upon `save()` with key 'figures/umap_fig1_score-wgs-hits.png'
βœ… storing file 'AC9siYlfUmxRitxQFNoo' at 'figures/umap_fig1_score-wgs-hits.png'
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png
πŸ’‘ file will be copied to default storage upon `save()` with key 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'
βœ… storing file 'q77GsTQVSONwdL9ZJmpt' at 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'

Review results#

Let’s load one of the plots:

ln.track()
file = ln.File.filter(key__contains="figures/matrixplot").one()
file.stage()
Hide code cell output
πŸ’‘ notebook imports: ipython==8.15.0 lamindb==0.52.1 scanpy==1.9.4
βœ… saved: Transform(id='1LCd8kco9lZUz8', name='Project flow', short_name='project-flow', version='0', type=notebook, updated_at=2023-09-04 09:37:43, created_by_id='bKeW4T6E')
βœ… saved: Run(id='6NK3SgaRS0yDu8k8jBU1', run_at=2023-09-04 09:37:43, transform_id='1LCd8kco9lZUz8', created_by_id='bKeW4T6E')
πŸ’‘ adding file q77GsTQVSONwdL9ZJmpt as input for run 6NK3SgaRS0yDu8k8jBU1, adding parent transform dp3VvVZyFZe2Sx
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/figures/matrixplot_fig2_score-wgs-hits-per-cluster.png')
display(Image(filename=file.path))
https://d33wubrfki0l68.cloudfront.net/dcbd1e67232f2ede82171ba02237575cc586c2b7/1ceff/_images/45891ad4693b5bfeb52a48b2ab2e5d0a82220b9482360ee1a8757fad581fffdc.png

We see that the image file is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

file.view_flow()
https://d33wubrfki0l68.cloudfront.net/c85d3d847b7e442921b98057d091c471d87aad3d/3fd59/_images/84586d2e349b75f7b75d2f097850050b720a3259161632c35449002a03bdba9d.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
name short_name version type reference initial_version_id updated_at created_by_id
id
vEFyCdq0VEjbKG Cell Ranger None 7.2.0 pipeline None None 2023-09-04 09:37:39 bKeW4T6E
transform.view_parents()
https://d33wubrfki0l68.cloudfront.net/a635d21bc1182dfd22d6789cbaae6ae9d3a8a274/9a748/_images/d2a64721b22980bf63216ea75b50d671b00d7666d3ba1af5dad8b8886e2b0d1c.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

File objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating a file:

run = ln.Run(transform=transform)
ln.File(filepath, run=run)
When does a file appear as a run input?

When accessing a file via stage(), load() or backed(), two things happen:

  1. The current run gets added to file.input_of

  2. The transform of that file gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

file.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the file:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the files created by that notebook:

ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
cWnFpm0dO1z8yVMv6Xnb IVuaIFtQ None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 O2Owo0_QlM9JBS2zAZD4Lw md5 nwR90nBd4stCS7 ib63CPjoGqNhJ22d0DZ7 None 2023-09-04 09:37:37 bKeW4T6E

Which transform ingested a given file?

file = ln.File.filter().first()
file.transform
Transform(id='woDiyJlh4Ihf47', name='Upload GWS CRISPRa result', type='app', updated_at=2023-09-04 09:37:36, created_by_id='DzTjkKse')

And which user?

file.created_by
User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-04 09:37:38)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
name short_name version type reference initial_version_id updated_at created_by_id
id
nwR90nBd4stCS7 GWS CRIPSRa analysis None None notebook None None 2023-09-04 09:37:37 bKeW4T6E
vEFyCdq0VEjbKG Cell Ranger None 7.2.0 pipeline None None 2023-09-04 09:37:39 bKeW4T6E
MLezyQ2UhEVuWL Postprocess Cell Ranger None 2.0 pipeline None None 2023-09-04 09:37:40 bKeW4T6E
dp3VvVZyFZe2Sx Perform single cell analysis, integrate with C... None None notebook None None 2023-09-04 09:37:42 bKeW4T6E
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-04 09:37:43 bKeW4T6E

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
name short_name version type reference initial_version_id updated_at created_by_id
id
nwR90nBd4stCS7 GWS CRIPSRa analysis None None notebook None None 2023-09-04 09:37:37 bKeW4T6E
dp3VvVZyFZe2Sx Perform single cell analysis, integrate with C... None None notebook None None 2023-09-04 09:37:42 bKeW4T6E
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-04 09:37:43 bKeW4T6E

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
File

storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
q77GsTQVSONwdL9ZJmpt IVuaIFtQ figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 JYIPcat0YWYVCX3RVd3mww md5 dp3VvVZyFZe2Sx Y9sJrfenaRU8Ob1abzGV None 2023-09-04 09:37:42 bKeW4T6E
AC9siYlfUmxRitxQFNoo IVuaIFtQ figures/umap_fig1_score-wgs-hits.png .png None None None 118999 laQjVk4gh70YFzaUyzbUNg md5 dp3VvVZyFZe2Sx Y9sJrfenaRU8Ob1abzGV None 2023-09-04 09:37:42 bKeW4T6E
xv1UgTKEAwbdlKbaNp38 IVuaIFtQ schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 MLezyQ2UhEVuWL D5ATcOKdx3JJJpST6gJh None 2023-09-04 09:37:40 bKeW4T6E
SXKbiEeMeS6UpIEUgqo2 IVuaIFtQ perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 CRkGl7E-DNnun7RcdH6TVQ md5 vEFyCdq0VEjbKG ZL5nlM7CMNYDEROXoMUf None 2023-09-04 09:37:39 bKeW4T6E
sukQ5QdzG7BBTfJb7b0N IVuaIFtQ perturbseq/filtered_feature_bc_matrix/matrix.m... .gz None None None 6 wnkXNwANIJj8H_j9lzbhNQ md5 vEFyCdq0VEjbKG ZL5nlM7CMNYDEROXoMUf None 2023-09-04 09:37:39 bKeW4T6E
o2UaXmcfLJgiK9pbBziW IVuaIFtQ perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 8VORAUMyoiwS32k3I1IreA md5 vEFyCdq0VEjbKG ZL5nlM7CMNYDEROXoMUf None 2023-09-04 09:37:39 bKeW4T6E
Y87gcjchQGbw2EwOuB5G IVuaIFtQ fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 Zza5rHTRr5MiN4vfqGTiWA md5 fuyfoReFFoQtMV x4uYhaSMTi9Mktln6f2l None 2023-09-04 09:37:38 DzTjkKse
Run

transform_id run_at created_by_id reference reference_type
id
5apOeXeGqCuOvX2Q15KV woDiyJlh4Ihf47 2023-09-04 09:37:35 DzTjkKse None None
ib63CPjoGqNhJ22d0DZ7 nwR90nBd4stCS7 2023-09-04 09:37:37 bKeW4T6E None None
x4uYhaSMTi9Mktln6f2l fuyfoReFFoQtMV 2023-09-04 09:37:38 DzTjkKse None None
ZL5nlM7CMNYDEROXoMUf vEFyCdq0VEjbKG 2023-09-04 09:37:39 bKeW4T6E None None
D5ATcOKdx3JJJpST6gJh MLezyQ2UhEVuWL 2023-09-04 09:37:39 bKeW4T6E None None
Y9sJrfenaRU8Ob1abzGV dp3VvVZyFZe2Sx 2023-09-04 09:37:40 bKeW4T6E None None
6NK3SgaRS0yDu8k8jBU1 1LCd8kco9lZUz8 2023-09-04 09:37:43 bKeW4T6E None None
Storage

root type region updated_at created_by_id
id
IVuaIFtQ /home/runner/work/lamin-usecases/lamin-usecase... local None 2023-09-04 09:37:33 DzTjkKse
Transform

name short_name version type reference initial_version_id updated_at created_by_id
id
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-04 09:37:43 bKeW4T6E
dp3VvVZyFZe2Sx Perform single cell analysis, integrate with C... None None notebook None None 2023-09-04 09:37:42 bKeW4T6E
MLezyQ2UhEVuWL Postprocess Cell Ranger None 2.0 pipeline None None 2023-09-04 09:37:40 bKeW4T6E
vEFyCdq0VEjbKG Cell Ranger None 7.2.0 pipeline None None 2023-09-04 09:37:39 bKeW4T6E
fuyfoReFFoQtMV Chromium 10x upload None None pipeline None None 2023-09-04 09:37:38 DzTjkKse
nwR90nBd4stCS7 GWS CRIPSRa analysis None None notebook None None 2023-09-04 09:37:37 bKeW4T6E
woDiyJlh4Ihf47 Upload GWS CRISPRa result None None app None None 2023-09-04 09:37:36 DzTjkKse
User

handle email name updated_at
id
bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-09-04 09:37:39
DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-09-04 09:37:38
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
πŸ’‘ deleting instance testuser1/mydata
βœ…     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
βœ…     instance cache deleted
βœ…     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata